6 resultados para ACTIVATION

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During maturation, muscle strength is enhanced through muscle growth, although neuro-muscular factors are also believed to be involved. In adults, training for power sports has been shown to enhance muscle strength and activation. The purpose of this study was to examine muscle strength and activation in power-trained athletes (POW) compared with non-athletes (CON), in boys and in adults. After familiarization subjects performed ten 5-s explosive maximal voluntary contractions for elbow and knee flexion and extension. The adults were stronger then the boys and the adult POW were stronger then the adult CON, even after correction for muscle size. Normalized rate of torque development was higher in the adults then in the boys and higher in the POW then CON boys. The rate of muscle activation was higher in the adults and POW groups. The results suggest that maturation and power-training have an additive effect on muscle activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medial prefrontal cortex (mPFC) is involved in performance-monitoring and has been implicated in the generation of several electrocortical responses associated with self-regulation. The error-related negativity (ERN), the inhibitory Nogo N2 (N2), and the feedback-related negativity (FRN) are event-related potential (ERP) components which reflect mPFC activity associated with feedback to behavioural (ERN, N2) and environmental (FRN) consequences. Our main goal was to determine whether or not rnPFC activation varies as a function of motivational context (e.g., those involving performance-related incentives) or the use of internally versus externally generated feedback signals (i.e., errors). Additionally, we assessed medial prefrontal activity in relation to individual differences in personality and temperament. Participants completed a combination of tasks in which performance-related incentives were associated with task performance and feedback generated from internal versus external responses. MPFC activity was indexed using both ERP scalp voltage peaks and intracerebral current source density (CSD) of dorsal and ventral regions. Additionally, participants completed several questionnaires assessing personality and temperament styles. Given previous studies have shown that enhanced mPFC activity to loss (or negative) feedback, we expected that activity in the mPFC would generally be greater during the Loss condition relative to the Win condition for both the ERN and N2. Also, due to the evidence that the (vmPFC) is engaged in arousing contexts, we hypothesized that activity in the ventromedial prefrontal cortex (vmPFC) would be greater than activity in the dorsomedial prefrontal cortex (dmPFC), especially in the Loss condition of the GoNogo task (ERN). Similarly, loss feedback in the BART (FRN) was expected to engage the vmPFC more than the dmPFC. Finally, we predicted that persons rating themselves as more willing to engage in approach-related behaviours or to exhibit rigid cognitive styles would show reduced activity of the mPFC. Overall, our results emphasize the role of affective evaluations of behavioural and environmental consequences when self-regulating. Although there were no effects of context on brain activity, our data indicate that, during the time of the ERN and N2 on the MW Go-Nogo task and the FRN on the BART, the vrnPFC was more active compared to the dmPFC. Moreover, regional recruitment in the mPFC was similar across internally (ERN) and externally (FRN) generated errors signals associated with loss feedback, as reflected by relatively greater activity in the vmPFC than the dmPFC. Our data also suggest that greater activity in the mPFC is associated with better inhibitory control, as reflected by both scalp and CSD measures. Additionally, deactivation of the subgenual anterior cingulate cortex (sgACC) and lower levels of self-reported positive affect were both related to increased voluntary risk-taking on the BART. Finally, persons reporting higher levels of approach-related behaviour or cognitive rigidity showed reduced activity of the mPFC. These results are in line with previous research emphasizing that affect/motivation is central to the processes reflected by mediofrontal negativities (MFNs), that the vmPFC is involved in regulating demands on motivational/affective systems, and that the underlying mechanisms driving these functions vary across both individuals and contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electromyographic threshold (EMGTh), defined as an upward inflexion in the rising EMG signal during progressive exercise, is thought to reflect the onset of increased type-II MU recruitment. The study’s objective was to compare the relative exercise intensity at which the EMGTh occurs in boys vs. men. Participants included 21 men (23.4±4.1 yrs) and 23 boys (11.1±1.1 yrs). Ramped cycle-ergometry was conducted to volitional exhaustion with surface EMG recorded from the vastus lateralis muscles. The EMGTh was mathematically determined using a composite of both legs. EMGTh was detected in 95.2% of the men and in 78.3% of the boys (χ2(1, n=44) =2.69, p =.10). The boys’ EMGTh was significantly higher than the men’s (86.4±9.6 vs. 79.7±10.0% of peak power-output at exhaustion; p <.05). These findings suggest that boys activate their type-II MUs to a lesser extent than men during progressive exercise and support the hypothesis of differential child–adult MU activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Feedback-Related Negativity (FRN) is thought to reflect the dopaminergic prediction error signal from the subcortical areas to the ACC (i.e., a bottom-up signal). Two studies were conducted in order to test a new model of FRN generation, which includes direct modulating influences of medial PFC (i.e., top-down signals) on the ACC at the time of the FRN. Study 1 examined the effects of one’s sense of control (top-down) and of informative cues (bottom-up) on the FRN measures. In Study 2, sense of control and instruction-based (top-down) and probability-based expectations (bottom-up) were manipulated to test the proposed model. The results suggest that any influences of medial PFC on the activity of the ACC that occur in the context of incentive tasks are not direct. The FRN was shown to be sensitive to salient stimulus characteristics. The results of this dissertation partially support the reinforcement learning theory, in that the FRN is a marker for prediction error signal from subcortical areas. However, the pattern of results outlined here suggests that prediction errors are based on salient stimulus characteristics and are not reward specific. A second goal of this dissertation was to examine whether ACC activity, measured through the FRN, is altered in individuals at-risk for problem-gambling behaviour (PG). Individuals in this group were more sensitive to the valence of the outcome in a gambling task compared to not at-risk individuals, suggesting that gambling contexts increase the sensitivity of the reward system to valence of the outcome in individuals at risk for PG. Furthermore, at-risk participants showed an increased sensitivity to reward characteristics and a decreased response to loss outcomes. This contrasts with those not at risk whose FRNs were sensitive to losses. As the results did not replicate previous research showing attenuated FRNs in pathological gamblers, it is likely that the size and time of the FRN does not change gradually with increasing risk of maladaptive behaviour. Instead, changes in ACC activity reflected by the FRN in general can be observed only after behaviour becomes clinically maladaptive or through comparison between different types of gain/loss outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This lexical decision study with eye tracking of Japanese two-kanji-character words investigated the order in which a whole two-character word and its morphographic constituents are activated in the course of lexical access, the relative contributions of the left and the right characters in lexical decision, the depth to which semantic radicals are processed, and how nonlinguistic factors affect lexical processes. Mixed-effects regression analyses of response times and subgaze durations (i.e., first-pass fixation time spent on each of the two characters) revealed joint contributions of morphographic units at all levels of the linguistic structure with the magnitude and the direction of the lexical effects modulated by readers’ locus of attention in a left-to-right preferred processing path. During the early time frame, character effects were larger in magnitude and more robust than radical and whole-word effects, regardless of the font size and the type of nonwords. Extending previous radical-based and character-based models, we propose a task/decision-sensitive character-driven processing model with a level-skipping assumption: Connections from the feature level bypass the lower radical level and link up directly to the higher character level.